Doing Research in Software Analysis
Lessons and Tips

Zhendong Su
UC Davis
Your success in life must be earned with earnest efforts.
A bit of my background

- Math BA & CS BS @ UT Austin
- CS PhD in 2002 @ Berkeley
 - Constraint and type based program analysis
 - Early: practical applications
 - Mid: constraint solving
 - Final: pure algorithms & complexity
- CS Professor @ UC Davis (since 2003)
 - Many interests, but stay in PL/SE/Security mostly
 - Whatever excites me AND my students
Lesson #1
Get inspired!
Dijkstra’s Three Golden Rules for Successful Scientific Research (The Idealist’s View)
Dijkstra’s Golden Rule #1

Raise your quality standards as high as you can live with, avoid wasting your time on routine problems, and always try to work as closely as possible at the boundary of your abilities. Do this, because it is the only way of discovering how that boundary should be moved forward.
Dijkstra’s Golden Rule #2

We all like our work to be socially relevant and scientifically sound. If we can find a topic satisfying both desires, we are lucky; if the two targets are in conflict with each other, let the requirement of scientific soundness prevail.
Dijkstra’s Golden Rule #3

Never tackle a problem of which you can be pretty sure that (now or in the near future) it will be tackled by others who are, in relation to that problem, at least as competent and well-equipped as you.
Read & Reread
Richard Hamming
“You and Your Research”
What is great research?

- Two styles of great research
 - A longstanding hard nut, you cracked it
 - Seminal work that opens up a new area

- Great research should have
 - Given a new powerful solution / concept
 - The potential to change how
 - A community thinks about a particular problem
 - People approach things
Lesson #2
Pick a problem for you
Pick a good problem

- Very hard
 - Art
 - Taste
 - Luck
 - Pain killers vs. vitamins

- Bottom-line
 - You should care about its solution!
 - You are just excited about it!
Types of problems: established

- The easiest kind
- Examples: pointer analysis, race detection ...
- **Incremental**, but **solid bricks**
- **Most** good work falls here
- **Most** bad work falls here as well
 - Incremental, but not quite solid bricks
Types of problems: hard nuts

- Longstanding, well-known problems
- New techniques
- Breakthroughs
- The problem solver type
Types of problems: essence

- Take a real-world **messy** problem
- Understand its **essence**
- Formulate/conceptualize
 - Problem
 - Concept
 - Solution
Types of problems: the hardest

- Problems **people don’t even know** they have
- The **visionary**, abstract **thinker** type
- **Revolutions** typically come out of here
The Pareto front
Lesson #3
Understand, justify, execute
How to solve a problem (1)

- **Understand** it
 - A *well-chosen example* for motivation & illustration
 - Never underestimate its importance

- **Formalize** if possible
 - Goal: obtain a *crisp description* of the problem

- **What are the key difficulties**
 - Conceptual, technical, and engineering
 - Extremely important to understand these well
How to solve a problem (2)

- How to approach the challenges
 - Key insights
 - Key technical novelties
 - Key engineering hurdles (i.e., feasibility)

- How to evaluate if you succeed doing the work
 - Ask this question early, don’t delay

- What unique & impressive to show at the end
 - Vision, problem formulation, theory, technique, results?
 - Is it so evidently unique and impressive?
 - Any elements of intrigue & surprise
How to solve a problem (3)

- The process is **full of decisions**
 - **Understand** your options well
 - **Don’t rush** to take the first option you think of
 - Can **justify** your choices
 - Also **understand** what’s **important**, what’s not
 - **Avoid** taking **shortcuts**

- Takeaways
 - Always **mindful**
 - Justify, **justify**, and justify
 - **Convince** yourself first, then others
Tip #1
Easy vs. difficult
Tip #2
Hammer vs. nail
Tip #3
Release tools
Tip #4

Excitement vs. despair
Tip #5

Results vs. the process
Final Remarks

- Everybody can do **fun & great** work
 - When you **believe** so
 - Why not, we all should!
 - When you **put your heart** to it

- **Great things will happen**, just
 - Dream **big, think big**
 - Be a **mindful & flexible thinker**
 - Work hard, never give up